

The SPHINX Enigma in Critical VoIP Infrastructures: Human or Botnet?

D. Gritzalis, Y. Soupionis

Dept. of Informatics

Athens University of Economics &

Business, Athens, Greece

{dgrit, jsoup}@aueb.gr

V. Katos, I. Psaroudakis
Dept. of Electrical & Computer

Engineering, Democritus University of

Thrace, Xanthi, Greece

{vkatos, jpsaroud}@ee.duth.gr

P. Katsaros, A. Mentis

Dept. of Informatics

Aristotle University of Thessaloniki,

Thessaloniki, Greece

{katsaros, mentis}@csd.auth.gr

Abstract---Sphinx was a monster in Greek mythology devouring

those who could not solve her riddle. In VoIP, a new service in

the role of Sphinx provides protection against SPIT (Spam over

Internet Telephony) by discriminating human callers from bot-

nets. The VoIP Sphinx tool uses audio CAPTCHA (Completely

Automated Public Turing test to tell Computers and Humans

Apart) that are controlled by an anti-SPIT policy mechanism.

The design of the Sphinx service has been formally verified for

the absence of side-effects in the VoIP services (robustness), as

well as for its DoS-resistance. We describe the principles and in-

novations of Sphinx, together with experimental results from

pilot use cases.

Keywords---SPIT; VoIP; CAPTCHA; Botnet; Security.

I. INTRODUCTION

Voice over IP (VoIP) is an Internet telephony technology
that provides a low-cost, high-quality and high-availability
service of multimedia data transmission. Inevitably though,
VoIP "inherits" one of the main internet security problems,
namely that of Spam over Internet Telephony (SPIT) [1].
SPIT is growing into a serious issue. This is evident in recent
reports published by telecommunication companies [2] and
from initiatives by major organizations like NEC aiming to
develop mechanisms that can tackle the problem [3]. Howe-
ver, there is still need for a complete and effective anti-SPIT
mechanism capable to provide robust and usable protection
to its users [4].

The Sphinx project focused on one of the dominant VoIP
protocols known as Session Initiation Protocol (SIP), which
has been found vulnerable to automated SPIT [5-7]. Sphinx
developed a service that consists of (a) known efficient mec-
hanisms such as white/black lists, (b) an anti-SPIT policy,
which takes into account the user preferences, and (c) an au-
tomated Reverse Turing Test (e.g., Captcha) that tells apart
the calls made by humans from those made by automated
software applications (botnets) [8-10]. Sphinx design combi-
nes the mentioned countermeasures, without side-effects to
the VoIP services. This has been formally verified along with
the service DoS-resistance.

Sphinx development passed through the following pha-
ses:

• Design of elementary mechanisms (i.e. black/white lists)
and structural units (conditions/countermeasures) for the
Sphinx anti-SPIT policy [11].

• Design and implementation of a robust audio Captcha for
the specific circumstances of Internet Telephony.

• Design of the policy control-flow that decides whether an
incoming call is handled by the audio Captcha or some of
the rest anti-SPIT mechanisms.

• Verification of Sphinx robustness by model checking
possible side-effects (deadlocks, non-progress cycles etc)
and desirable properties like fairness and DoS-resistance.

• Operational evaluation by running experiments over a
VoIP infrastructure and tests driven by pilot use cases.

We present the service architecture, the main design princip-

les and experimental results from pilot use cases.

II. SERVICE ARCHITECTURE & POLICY MECHANISM

Fig. 1 illustrates the Sphinx physical architecture, how
the servers and end user agents are connected, as well as the
call flow within our VoIP infrastructure.

Figure 1: VoIP infrastructure for the Sphinx service

Sphinx runs over an Application Server and utilizes a se-
parate audio Captcha Server. The protected VoIP PBX for-
wards call establishment requests to Sphinx. An Asterisk SIP

server was used in our VoIP infrastructure that was connect-
ed to a classic TDM PBX and a VoIP router gateway for tes-
ting purposes. On the callers’ side, we set up another SIP ser-
ver, in order to realize various SPIT scenarios.

Sphinx main functions provide support to manage: (a) all
incoming SIP sessions that are forwarded by the Asterisk
PBX server, (b) the enforced anti-SPIT policy and the opera-
ting preferences related to “bot” identification, (c) the redire-
ction of SIP sessions to the audio Captcha server, if necessa-
ry, and (d) the user preferences, which further refine the anti-
SPIT policy. Call data logs are kept for performance and in-
cident diagnosis purposes. Sphinx was implemented as a SIP
servlet over the JBoss Application Server using the Mobi-
cent

1
 communication middleware. Fig. 2 shows the distribu-

tion of the service modules over the Application and Audio
Captcha servers and their runtime environment. Servers are
Linux-based and afford MySQL database services, whereas
the Sphinx service is provided by Apache Web Server.

Figure 2: Sphinx service modules

The service database stores operational preferences for
the audio Captcha server (Table 1), system and user policy
preferences including black/white lists and logic rules, logs,
and user data needed for GUI-based user authentication. My-
SQL’s federated database engine connects the database of
the Asterisk server with the one residing on Sphinx Applica-
tion server, thus allowing real time database synchronization.

Table 1: Audio Captcha server operational parameters

Attribute Value

Enable Captcha True/False

Difficulty level Easy/Medium/Hard

Number of concurrent sessions Integer

Number of failed attempts Integer

Response time (sec) Integer

Maximum records in log file Integer

The audio Captcha functionality may be used by different
applications with Sphinx being one of them. This require-
ment determined the decision to implement audio Captchas
as a separate service. The basic algorithm was developed us-
ing the php class Asterisk Gateway Interface (phpAGI) that
interacts with the asteriskNow

2
 software to provide audio

Captchas as a standalone service.

1 http://www.mobicents.org/
2 http://www.asterisk.org/downloads/asterisknow

AsteriskNow is a widespread open source SIP server im-
plementation and as mentioned we also used it in place of the
Sphinx protected VoIP PBX. The provided API supports ea-
sy manipulation of SIP headers and allows storing useful me-
tadata in the call-records database. The VoIP PBX runtime
environment offers administration access through the Free-
PBX web-based application over an Apache server and inc-
ludes a MySQL database that stores operational parameters,
such as SIP extensions, voice trunks, call records etc.

A fundamental problem in realizing Sphinx over the des-
cribed physical architecture is that the asterisk software acts
as a back-to-back user agent and changes the SIP session ID
every time that a call request is forwarded to an external ser-
vice (numbered links in the call flow of Fig. 1 correspond to
different SIP session IDs). To this end, an extra SIP Header
is appended to every incoming call request, such that it can
be uniquely identified over the whole duration of the Sphinx-
mediated call flow. More precisely, upon receipt of a call re-
quest, the Asterisk PBX reads from the SIP headers the SIP
session ID, the CallerID and caller’s IP address. An additio-
nal SIP header named X-Init concatenates the three values
and is then propagated by the SIP INVITE message.

Figure 3: Sphinx policy control flow

Fig. 3 shows the applied policy control-flow. First, every
call request is checked against pre-defined system preferen-
ces that may include a black list. If the caller has not been
blacklisted, a series of additional characteristics are checked
that could classify the call request as a bot-originated SPIT.

Table 2 provides a set of metrics that based on our expe-
rience can be used to detect calls matching characteristic bot
behavioral patterns (e.g. frequent calls with short duration).
The average call duration refers to the pure conversation ti-
me (from step 7, Fig. 1, call flow) and can be retrieved from
the Asterisk SIP server database. For suspicious callers, we
opt to temporarily revoke their access to the protected VoIP
services.

INCOMING CALL

SYSTEM PREFERENCES

IS BOT ?

CALLEE PREF

User policy

CALEE B/W/G LIST

CAPTCHA CHECK

B/W LISTS

ACCEPT

RECORD CALL

ATTRIBUTES

BLACK LIST

BLOCK

POLITE BLOCK

DENY CALL

ACCEPT CALL

YES

NO OR MAYBE

ACCEPT CALL

DENY CALL

PASS
FAIL

BLACK LIST
WHITE LIST

GREY LIST

Table 2: Metrics used to detect bot-originated SPIT

Attribute Value

Number of calls per hour from same caller Integer

Number of successive calls from same caller Integer

Average of call duration per caller (sec) Integer

Number of callers per minute from same caller Integer

Call requests that have not been blocked due to system
preferences are then checked against a user-defined policy.
Such a policy may: (a) impose constraints like the time win-
dow in which the user accepts/does not accept calls from
(particular) callers, and (b) filter call requests based on the u-
ser’s black/white lists.

The Captcha test process is then triggered for call requ-
ests that have not been previously blocked or accepted (grey
listed). Every such request is forwarded to the connected Au-
dio Captcha Server in order to be processed according to o-
perating parameters retrieved from the Sphinx database. U-
pon completion of the Captcha test, the call request is return-
ed to the Sphinx Application server along with the test result
that is recorded in the database. Captcha test failures cause
updates of the callees’ black lists, in order to block subsequ-
ent call attempts by the same callers. If a spitter keeps chang-
ing his caller ID, then he is unable to pass the Captcha test
and therefore his call characteristics are recorded in order to
analyze them for future call blocking. Accepted requests are
returned to the Asterisk PBX for further handling. In both ca-
ses, all call metadata are logged for diagnostic purposes.

Sphinx operating parameters can be changed through a
web application for the service administrator, who can also
inspect the available logs for call diagnosis. Sphinx users can
manage their own personal black and white lists through a
separate application. Finally, they can define new user polici-
es based on a user-friendly graphical interface.

III. AUDIO CAPTCHA

Our implementation is based on audio Captcha [12]. We de-
veloped, apart from evaluating the current audio Captcha im-
plementations, a new audio Captcha for VoIP environments.
The proposed Captcha is easy for human users to solve, easy
for a tester machine to generate and grade, and hard for a
software bot to solve. The validation of its performance was
made by two means, i.e., (a) by user tests and (b) by bots
configured to solve “difficult” audio Captcha.

Based on these features, we followed an iterative algo-
rithm: (a) we selected a set of attributes that are appropriate
for audio Captcha (b) we developed a Captcha that is based
on these attributes, and (c) we evaluated the Captcha by cal-
culating the success rates of a bot and of a number of users,
until the results were adequately, that is not only the bots
success rate was lower than a predefined threshold but also
the users’ success rate was higher by a another threshold.

As both high user and low bot success rate is a key factor
in deciding whether a new Captcha is effective or not, we de-
fined a number of attributes which affect those rates. The
main characteristic of these attributes is that they should all
be adjusted in the production process of the Captcha.

We classified these attributes into four main categories:
(a) vocabulary, (b) background noise, (c) time and (d) audio
production. Each one had subcategories, such as the vocabu-
lary and time attributes have the language requirement and
total Captcha duration subcategories respectively. The only
limitation this audio Captcha have is that the vocabulary
should only consist of digits, as it will be used for telephony
systems and there are specific phone keyboard constraints.

In order to test the produced Captcha we invited 35 users,
who had a university degree and used a computer more than
20 hrs/week, and we used automated audio recognition tools.
Most of the users aged between 20-30 years old and 6 per-
sons were older than 40 years oldThe tools were a state-of-
the-art open-source speech recognition tool (Sphinx) and a
frequency and energy pick detection bot, called DevoiceCap-
tcha. The bots were selected because (a) they have a known
track record for audio Captcha solving, (b) they are widely-
used, and (c) they can be adapted in a VoIP environment.

Additionally, we had to integrate the Captcha server in a
SIP-based VoIP infrastructure for our tests. We examined
and decided that it would include three stages (Fig. 4). When
the Asterisk domain receives a message (Stage 1), there are 3
possible scenarios, based on the policy outcome: (a) forward
the message to the callee, (b) reject the message, and (c) for-
ward the message to Captcha server.

If the INVITE message is forwarded to Captcha, then the
Stage 2 is adopted. In Stage 2 an audio Captcha is sent to the
caller by establishing a VoIP session. Lastly, the caller sends
the answer, which is evaluated by the Captcha server. If it is
correct the INVITE is forwarded to callee (Stage 3), else a
new Captcha is send to caller. There is a maximum number
of 3-4 retries, according to the implemented policy.

Figure 4: Captcha server integration

When the Captcha is evaluated against a bot attack, the
caller was simply replaced by a bot. The bot records the au-
dio Captcha, reforms it to an appropriate audio format (slin -
Asterisk compatible) and identifies the announced digits. As
soon as the bot has generates an answer, it forms a SIP mes-
sage and the encoded DTMF answer using the SIPp tool. If
the bot’s answer is not correct then a new Captcha is sent and
the bot starts to record again (Stage 2). The procedure de-
pends mainly on the time needed to reform the message. Mo-
reover, the particular bot needs approximately 0.10sec to id-
entify a 3-digit Captcha and 0.15sec to identify a 4-digit one.

Using the above evaluation platform and appropriate
number of attributes we can fully control and adjust an effec-
tive and user acceptable audio Captcha. Each attribute added
strength to the Captcha and directly affected the user and bot
success rates. The final Captcha had an average user success
rate of 87% - each user solved 5 different Captchas), with an
average bot’s success rate of <1% (Fig. 5).

Figure 5: Proposed Captcha success rates

Based on the above attributes and the test outcomes, the
characteristics of the proposed Captcha implementation are
presented in Table 3. These characteristics were finalized af-
ter implementing four different failed Captcha.

Table 3: Proposed VoIP Captcha attributes

VoIP Captcha Attributes

User success rate 88%

Background noise music, noise

Intermediate noise voice, music, noise

Data field 0-9

Spoken characters variation 3-4

Streaming reproduction yes

Rare reappearance yes

Production process automated

Language requirements multiple languages

Various speakers yes

Duration (sec) 2-6

Beeps (before/after) 0/0

IV. FORMAL VERIFICATION

Key concerns in the design of Sphinx are its robustness and
its resistance against potential DoS attacks. Robustness refers
to the avoidance of side-effects in the capability of the SIP
protocol to operate as expected, even in the presence of ran-
dom SPIT calls and communication error messages. DoS-re-
sistance ensures protection against malicious abuse of the
Captcha mechanism that may cause exhaustion of limited
server resources and in effect render the VoIP server unavail-
able for legitimate use.

Robustness properties that have been checked include (a)
the absence of deadlocks and non-progress cycles (livelocks)
in error-free communications, (b) fairness for the service u-
sers, (c) guaranteed call establishment for error-free SIP ses-
sions, and (d) absence of message overload that could violate
call establishment timeliness. All properties were formally
verified by model checking a Sphinx system model develop-
ed in the SPIN toolset [13,14]. The model was parameterized
based on measurements taken in our VoIP infrastructure, for

the SIP message exchange times with (and without) the anti-
SPIT policy. The Sphinx system model was checked in exe-
cution scenarios of parallel error-free and erroneous SIP
communication sessions. At the end, the model was proved
correct with respect to the formally stated properties.

The design of DoS-resistance against bandwidth abuse
was guided by an evaluation of four different policies for
Captcha admission control [15]. Each policy filters excessive
call establishment requests, based on a bandwidth preservati-
on criterion for authorized users; therefore, it opens a possi-
bility to drop legitimate Captcha challenges. DoS-resistance
is, thus, associated with some cost for each of the considered
Captcha admission control policies.

Evaluation of the effects of bandwidth preservation, in
terms of the incurred costs and achieved benefits, was based
on a probabilistic system model of our Captcha mechanism
under DoS attack conditions. The Continuous Time Markov
Chain that was developed in the PRISM model checker3 re-
flects the race for sharing the available bandwidth of a VoIP
server between malicious and legitimate Captcha requests
and the needs for servicing authorized users. Parameter valu-
es for bandwidth consumption were representative for the
demands of the Sphinx audio Captcha, whereas the available
bandwidth was set to a value that corresponds to the link ca-
pacity of our VoIP infrastructure.

All aspects of cost and benefit for the bandwidth usage
[16] were taken into account by selected metrics that altoget-
her avoid quantifying the same effects twice. Two cost met-
rics were used, namely: the probability to drop a call establi-
shment request by a new client and the percentage of unused
bandwidth during a DoS attack. The benefit metric used was
the probability to accept a call establishment request by an
authorized user.

All metrics were quantified based on reward model struc-
tures and properties that were expressed in the PRISM logic
query language. Results in Fig. 6 show that threshold-based
control and the cutoff policy outperform over the other sche-
mes in terms of their net-benefit value (cost-effectiveness).
As a result, Sphinx constantly monitors bandwidth usage. U-
nidentified call requests may be dropped if they cause excee-
ding of the defined threshold for efficient bandwidth usage.

Figure 6: Comparing Captcha admission control policies

V. USE CASES & EXPERIMENTS

We discuss a series of use cases from the perspective of the
Sphinx-protected users. Every such user can define rules for

3
 http://www.prismmodelchecker.org/

blocking calls that violate specific constraints on their chara-
cteristic attributes (e.g. caller identifier and time). These calls
are dropped without activating the Sphinx Captcha test. If a
call cannot be classified as SPIT or unwanted and the caller
has not been previously identified as human, then a Captcha
test is submitted to the caller. There is only a limited number
of tries for the caller to resolve the Captcha test and this
number is adjusted by the service administrator. If the caller
does not respond within a pre-defined time-span, the Captcha
test ends with failure. Upon success, the call is forwarded to
the Asterisk PBX, in order to establish the call session.

Captcha failures are recorded, in order to detect callers
that repeatedly fail in a number of attempts. These callers
can be characterized with high likelihood as bots and can be
black-listed through a policy action or manually by the servi-
ce administrator. On the other hand, callers who consistently
pass the Captcha tests for a few times can be safely consider-
ed as non-spammers and are therefore white-listed. Identified
non-spammers can then access the Sphinx-protected VoIP
services in their subsequent attempts, without having to pass
through the discussed checks.

Sphinx was tested for a series of protection scenarios inc-
luding: (a) calls by callers that have not been previously i-
dentified as humans, (b) frequent call requests aiming to ex-
haust the server resources, (c) callers with characteristic bot
behaviors, (d) calls from known spammers, and (e) calls that
have been marked by the callee as undesirable.

Case study: Flooding attack
SIP has been found vulnerable to flooding attacks. This

harmful practice is common in VoIP networks. We distin-
guish four types of flooding attacks against the SIP services:
Register flooding: The attacker tries to register with a SIP
server using either valid or invalid user credentials. This can
happen, because SIP registrars often accept connections from
public IP addresses.
Call flooding: The attacker sends an excessive number of
SIP Invite messages to servers that accept connections from
public IP addresses.
Call control flooding: The attacker floods the server with
valid or invalid call control messages (e.g., SIP INFO, NO-
TIFY, Re-INVITE) after the call setup.
Ping flooding (in application layer): The attacker floods the
server with SIP OPTIONS messages.

The ultimate goal in the four attack options is the denial
of SIP services to the honest VoIP users. In a SPIT attack,
the attacker’s goal is to deliver an unsolicited message to one
or more VoIP service users. Similar to call flooding, the at-
tacker can use a URI combined with a spoofed “FROM SIP”
header to evade detection. In the sequel, we report experi-
mental results for the following attack vector:

Step 1: Reconnaissance. First, the attacker tries to disco-
ver an open SIP server that accepts SIP Invite messages from
public IP addresses. This is possible by using scanning tools
such as the well-known nmap or the smap tool.

Step 2: Enumeration. The attacker finds the numeric
range of addresses served by the target SIP domain server,
i.e. all valid URI. This may be possible through advanced so-

cial engineering techniques or by gathering information from
web sites, social media and so on.

Step 3: Launching SPIT. The attacker is ready to launch
a SPIT attack based on the same tools used for call flooding.
The tool creates a single SIP Invite message with every valid
URI and supports the playback of a previously recorded au-
dio spam message. To this end, we used Sipp, a VoIP penet-
ration tool and SIP traffic generator that produced the attack
workload for a pool of spoofed Caller IDs.

Sphinx was successful in countering the discussed attack
vector, due to the combined action of our anti-SPIT policy
with the audio Captcha tests. Malicious calls are blocked be-
fore reaching the callees, because the Captcha challenges
cannot be solved by the attacker. But even when the attacker
backs off before reaching the allowed “Number of failed at-
tempts” in order to avoid the blacklist he cannot bypass the
Sphinx anti-SPIT protection. In this case, if the call attempts
reach the metric value “number of successive calls from sa-
me caller”, all subsequent calls by the same Caller ID are di-
rectly dropped. Table 4 is a part of the Sphinx service log,
for “number of failed attempts” (captcha tries) equal to 3 and
“number of successive calls from same caller” equal 5.

Table 4: Attack logs (Step 3)

Call

Caller ID Callee Outcome
Start
time

Finish
time

Captcha
tries

Captcha
outcome

Black
listed

2993
spiter@

127.0.1.1
409

SYSTEM_CALL

ER_MAX_

SERIAL_CALLS

_EXCEEDED

2012-

12-31

13:17:5

2.0

- 0
NO_CAPT

CHA
NO

2992
spiter@

127.0.1.1
408

SYSTEM_CALL

ER_MAX_
SERIAL_CALLS

_EXCEEDED

2012-

12-31
13:17:3

9.0

- 0
NO_CAPT

CHA
NO

2991
spiter@

127.0.1.1
407

SYSTEM_CALL

ER_MAX_

SERIAL_CALLS

_EXCEEDED

2012-

12-31

13:17:2

6.0

- 0
NO_CAPT

CHA
NO

2990
spiter@

127.0.1.1
406

SYSTEM_CALL

ER_MAX_
SERIAL_CALLS

_EXCEEDED

2012-

12-31
13:17:1

2.0

- 0
NO_CAPT

CHA
NO

2989
spiter@

127.0.1.1
405

IN_SYSTEM_W

HITELIST

2012-
12-31

13:16:3

9.0

2012-12-31

13:17:10.0
2

CAPTCHA

_FAIL
NO

2988
spiter@

127.0.1.1
404

IN_SYSTEM_

WHITELIST

2012-
12-31

13:16:0
7.0

2012-12-31

13:16:37.0
2

CAPTCHA

_FAIL
NO

2987
spiter@

127.0.1.1
403

IN_SYSTEM_

WHITELIST

2012-

12-31

13:15:3

6.0

2012-12-31

13:16:05.0
2

CAPTCHA

_FAIL
NO

2986
spiter@

127.0.1.1
402

IN_SYSTEM_

WHITELIST

2012-

12-31

13:15:0
3.0

2012-12-31

13:15:33.0
2

CAPTCHA

_FAIL
NO

2985
spiter@

127.0.1.1
401

IN_SYSTEM_

WHITELIST

2012-

12-31

13:14:3

1.0

2012-12-31

13:15:01.0
2

CAPTCHA

_FAIL
NO

Step 4: SPIT with different spoofed Caller ID. The at-
tacker now attempts to bypass Sphinx anti-SPIT protection
by spoofing the Caller ID for every SIP Invite message.
Though he can avoid blocking due to the system policy [12,
17,18], he still fails to solve the audio Captcha test. More-
over, an excessive number of failed Captcha will trigger in-
forming warnings to the service administrator, in order to
further investigate it and to apply countermeasures such as

blocking the offending IP. The use of an authentication mec-
hanism is not advisable, since it adds not only significant la-
bor to install it to each participating entity but also important
overload to identify each message.

Table 5: Attack logs (Step 4)

Call # Caller ID Callee Outcome
Start

time

Finish

time

Captcha

tries

Captcha

outcome

Black

listed

3038
spitter410@

127.0.1.1
410

IN_SYSTEM_Β

LACKLIST

2012-
12-31

13:36:

51.0

2012-
12-31

13:37:

20.0

3
CAPTCHA

_FAIL
NO

3037
spitter409@

127.0.1.1
409

IN_SYSTEM_B

LACKLIST

2012-
12-31

13:36:
18.0

2012-
12-31

13:36:
49.0

3
CAPTCHA

_FAIL
NO

3036
spitter408@

127.0.1.1
408

IN_SYSTEM_

BLACKLIST

2012-

12-31

13:35:

47.0

2012-

12-31

13:36:

16.0

3
CAPTCHA

_FAIL
NO

3035
spitter407@

127.0.1.1
407

IN_SYSTEM_

BLACKLIST

2012-
12-31

13:35:
14.0

2012-
12-31

13:35:
45.0

3
CAPTCHA

_FAIL
NO

3034
spitter406@

127.0.1.1
406

IN_SYSTEM_
BLACKLIST

2012-

12-31
13:34:

43.0

2012-

12-31
13:35:

12.0

3
CAPTCHA

_FAIL
NO

3033
spitter405@

127.0.1.1
405

IN_SYSTEM_
BLACKLIST

2012-

12-31
13:34:

11.0

2012-

12-31
13:34:

40.0

3
CAPTCHA

_FAIL
NO

3032
spitter404@

127.0.1.1
404

IN_SYSTEM_

BLACKLIST

2012-

12-31

13:33:

38.0

2012-

12-31

13:34:

08.0

3
CAPTCHA

_FAIL
NO

3031
spitter403@

127.0.1.1
403

IN_SYSTEM_

BLACKLIST

2012-

12-31

13:33:

07.0

2012-

12-31

13:33:

36.0

3
CAPTCHA

_FAIL
NO

3030
spitter402@

127.0.1.1
402

IN_SYSTEM_

BLACKLIST

2012-

12-31

13:32:

34.0

2012-

12-31

13:33:

04.0

3
CAPTCHA

_FAIL
NO

3029
spitter405@

127.0.1.1
401

IN_SYSTEM_

BLACKLIST

2012-
12-31

13:32:
02.0

2012-
12-31

13:32:
32.0

3
CAPTCHA

_FAIL
NO

VI. CONCLUDING REMARKS

As with every security control introduced in an ICT infrast-
ructure, Sphinx aims to manage a tradeoff between user pro-
tection and user acceptance with regards to the security tech-
nology and service in question. Provided that SPIT is an ever
increasing phenomenon due to the reduced telephony costs
and improved level of sophistication of the SPIT bots, the
perceived added value of VoIP communications may dimi-
nish. As such, a systematic treatment of the SPIT problem li-
ke the one pursued by Sphinx is expected to become popular
in the VoIP domain.

Understanding that telephony is reaching a large number
of users with different competencies, needs and cognitive
skills, any anti-SPIT mechanism must be effective whilst res-
pecting the user’s needs and requirements. Sphinx employs a
number of different approaches and our tests show that in or-
der to realistically protect users from automated SPIT bots
the protection mechanism should have an adaptable and cus-
tomizable security policy, as in the opposite case the security
mechanism will lead the system to a degenerated state, pro-
moting frustration and exclusion of users.

ACKNOWLEDGMENTS

The Sphinx project is co-financed by the European Regi-
onal Development Fund and national funds, through the Gre-
ek Ministry of Education (Operational Programme “Compe-
titiveness & Entrepreneurship II”, Measure “Cooperation”).

REFERENCES

[1] Walsh T., Kuhn D., “Challenges in Securing Voice over IP”, IEEE

Security & Privacy, pp. 44-49, May/June 2005.

[2] Cisco Annual Security Report, http://www.cisco.com/en/US/ prod/

collateral/vpndevc/security_annual_report_2011.pdf, 2011.

[3] Seedorf J., d’Heureuse N., Niccolini S., Ewald T., “VoIP SEAL: A

research prototype for protecting Voice-over-IP networks and users”,

in Konferenzband der 4. Jahrestagung des Fachbereichs Sicherheit

der Gesellschaft f¨ur Informatik, April 2008.

[4] Keromytis A., “A Comprehensive Survey of Voice over IP Security

Research”, IEEE Communications Surveys & Tutorials, Vol. 14, No.

2, pp. 514-537, 2012.

[5] Gritzalis D., Marias G., Rebahi Y., Soupionis Y., Ehlert S., “SPIDER:

A platform for managing SIP-based spam over Internet Telephony”,

Journal of Computer Security, Vol. 19, No. 5, pp. 835-867, 2011.

[6] Keromytis A., “Voice-over-IP Security: Research and Practice”,
IEEE Security and Privacy, Vol. 8, No. 2, pp. 76-78, 2010.

[7] Rosenberg J., Jennings C., The Session Initiation Protocol (SIP) and

Spam, Network Working Group, RFC 5039, January 2008.

[8] Bursztein E., Bethard S., Fabry C., Mitchell J., Jurafsky D., “How

good are humans at solving CAPTCHA?”, in Proc. of the 2010 IEEE

Symposium on Security and Privacy, pp. 399-413, USA, 2010.

[9] Bigham J., Cavender A., “Evaluating existing audio CAPTCHA opti-

mized for non-visual use”, in Proc. of the ACM Conference on Hu-

man Factors in Systems, pp. 1829-38, ACM Press, USA, 2009.

[10] Markkola A., Lindqvist J., “Accessible voice CAPTCHA for Internet

telephony”, in Proc. of the 2008 Symposium on Accessible Privacy

and Security, ACM Press, USA, 2008.

[11] Soupionis Y., Dritsas S., Gritzalis D., "An adaptive policy-based ap-

proach to SPIT management", in Proc. of the 13th European Symposi-

um on Research in Computer Security, pp. 446-460, Springer, 2008.

[12] Soupionis Y., Gritzalis D., “Audio CAPTCHA: Existing solutions as-

sessment and a new implementation for VoIP telephony”, Computers

& Security, Vol. 29, Νο. 5, pp. 603-618, 2010.

[13] Gritzalis D., Katsaros P., Basagiannis S., Soupionis Y., “Formal ana-

lysis for robust anti-SPIT protection using model-checking”, Int.

Journal of Information Security, Vol. 11, No. 2, pp. 121-135, 2012.

[14] Soupionis Y., Basagiannis S., Katsaros P., Gritzalis D., “A formally

verified mechanism for countering SPIT”, in Proc. of the 5th Interna-

tional Conference on Critical Information Infrastructure Security,

pp.128-139, Springer (LNCS-6712), Greece, 2010.

[15] Stachtiari E., Soupionis Y., Katsaros P., Mentis A., Gritzalis D., “Pro-

babilistic model checking of CAPTCHA admission control for DoS

resistant anti-SPIT protection”, in Proc. of the 7th Int. Conference on

Critical Information Infrastructures Security, Springer, 2012.

[16] Deshpande, T., Katsaros, P., Basagiannis, S., Smolka, S. “Formal a-

nalysis of the DNS bandwidth amplification attack and its counterme-

asures using probabilistic model checking”, in Proc. of the 13th IEEE

Int. High Assurance Systems Engineering Symposium, pp. 360-367,

USA, 2011.

[17] Soupionis Y., Gritzalis D., ASPF: An adaptive anti-SPIT policy-ba-

sed framework, in Proc. of the 6th International Conference on Avail-

ability, Reliability and Security, pp. 153-160, Springer, Austria, 2011.

[18] Tam J., Huggins-Daines J., von Ahn L., Blum M., “Improving audio

CAPTCHAs”, in Proc. of the 2008 Symposium on Accessible Privacy

and Security, ACM Press, USA, 2008.

